Do overarching mitigation objectives dominate transportspecific targets in the EU

F. Ghersi (CIRED)

S. McDonnell (UCD/NYU)

O. Sassi (CIRED)

Outline

- 1. EU transportation trends and policy responses
- 2. Model description
- 3. 2 Macroeconomic & energy scenarios
- 4. Road transportation in the 2 scenarios for 2020 and 2050

European Road Transportation Trends

- Sustained growth in demand
 - Overall mobility:
 - 35km per capita per day (x2 since 1970)
 - Increased modal domiance1995-2004:
 - Passenger cars: +19% pkm (85% of pkm)
 - Road freight: +35% tkm (44% of pkm)
 - Consequences: Increased economic costs and environmental damage
 - 67% of final oil consumption in EU
 - 85% of transport CO₂ (28% total emissions, +23% since 1990

European Policy Response 1: Transportation White Paper (2001/6)

- Expands 1992 paper, introduces sustainability
- Key objectives (2010/20):
 - High mobility
 - Environment, energy etc.
 - Innovate in support of first two aims
- 60 EU-level specific measures in 13 areas
- Longer term beyond the scope of WP
- 2008 update: Greening transport (20-40 yrs)

European Policy Response 1: EUSDS (2001/6)

- Transport to meet society's economic, social and environmental needs
 - Decouple growth and transport demand
 - Sustainable energy use, reduce GHG and local emissions
 - Mode share back to 1998
- Objectives for EU policymaking:
 - 2°C cap, 60-80% reduction by 2050
 - CO2: overall and g/km (130/10g CO2/km)
 - Local emissions EURO V/VI
 - Mode shares back to 1998
 - Biofuel (2010: 5.75%; 2020: 10%, targets as shares)

Policy Update 2008/9

- Renewable Energy Directive Proposals (1/2008):
 - National targets for share of RE by 2020; 20% for EU
 - Transport: 10% of final consumption of energy
 - But: 35% GHG emissions reductions
 - Not from land with high biodiversity/carbon stock
 - EU raw materials must meet tough min. standards
 - Parliament: 2015: 5%; 2020: 10%
 - In reality, targets are 4% and 6%

Are these short-term objectives implied by the overarching CO₂ targets?

What are the implications of these overarching targets on road transportation?

Modelling Framework

IMACLIM-R

- Recursive hybrid CGE model
- A world economy of 12 regions and 12 sectors
- Transportation as 3 distinct sectors + a specific household model trade-off (s.t. budget and time constraint)
- Specifically dedicated to BU integration

POLES

- Recursive model of global energy systems
- 48 regions, ca. 25 final uses, endogenous primary mkts
- Transportation: vintage car fleets, 2 other agg. Fleets
- Soft-linking through iterative convergence

Two Scenarios: REF and OCC (450ppm)

- REF (no carbon constraint):
 - Main drivers: labour productivity and demographics
 - Decoupling of growth and CO₂ emissions
 - Non-renewables increase significantly
 - Sustained growth, less energy-intensive
 - EU CO₂: 2020/50 +19%/+13% over 1990
- Overarching Carbon Constraint (OCC):
 - Global carbon profile (450ppm stabilisation), WRE after 2010 (massive emission reductions)
 - EU CO2: 2020/50 -22%/-65% below 1990
 - ROW follows to lesser extent
 - Generalised carbon tax

CO₂ Emissions in REF and OCC

Figure 1. CO₂ emissions in the REF scenario

• OCC: economies feel most pain in early years, growth then trends back to REF

Figure 2. CO2 emissions in the OCC scenario

Road Transportation under 2020/2050 REF and OCC

 Agg. ground passenger mobility resilient to high carbon prices in OCC

European motorised ground mobility

- Limited impact on energy consumption also
 - stabilisation (barely)
 - Fuel mix similar
 - CtL fuels blocked in OCC, replaced by biofuels
- Fleet composition changes:
 - OCC: non-conventional vehicles 25%/44% by 2030/50 (10%/17% in REF)

CO₂ Emissions

Figure 7. Tank-to-wheel CO₂ emissions of ground transportation, REF (upper graph) vs OCC (lower graph) scenario

OCC Reductions:

- 14% of REF (2020)/ 25% of REF (2050)
- Small compared to overall reductions (34%/69%)
- Transport as an obstacle

Transport Objectives Under REF and OCC

Target	Year	Objective	REF scenario	OCC scenario
Share of biofuels	2015	5%	1.55%	1.76%
Share of biofuels	2020	10%	2.95%	4.02%
LDV CO ₂ emissions, vintage average	2012	120 g/km	134 g/km	127 g/km
LDV CO ₂ emissions, vintage average	2020	95 g/km	132 g/km	120 g/km

- Targets missed in OCC and REF
- Biofuel
 - Too early and Carbon price too low to incentivise 2nd gen
 - OCC starts to makes difference for biofuels by 2020
- CO₂ emissions:
 - OCC starts to make difference but still missed

Conclusions

- Stringent medium and long-term CO2 mitigation targets <u>don't</u> dominate shorterrun objectives
- Challenge to policymakers:
 - Lock-in in carbon intensive trajectories
 - May undermine 2050 objective of 60-80% reductions
 - More ambitious transport-specific policy agenda